Hubble űrteleszkóp felvétele egy galaxisról
Fotó: NASA, ESA and A. Riess (STScI/JHU)

Vizsgálataik szerint sötét energia nélkül is meg lehet magyarázni az Univerzum gyorsulva tágulását. Az Univerzum 13,7 milliárd évvel ezelőtt keletkezett az Ősrobbanás során. Azóta a Világegyetem egyre tágul: ahogy azt a megfigyeléseken alapuló Hubble-törvény kimondja, minél távolabb van tőlünk egy galaxis, annál jobban eltolódik színképe a vörös felé, azaz annál nagyobb a látszólagos távolodási sebessége. A kezdetben egyenletes anyageloszlás a gravitáció hatására csomósodik, így jöttek és jönnek létre a csillagok valamint a galaxisok. Még nagyobb skálán, a galaxisok sem egyenletesen töltik ki a teret, hanem habszerű hártyákba, filamentumokba, klaszterekbe csoportosulnak. Ennek kimutatásában, azaz az Univerzum három dimenziós térképének megalkotásában is fontos szerepet játszottak az ELTE kutatói.

Nagy távolságokon a gravitáció az egyedüli számottevő erő, ami az anyagot mozgatja. A gravitációt és a tér tágulását az Einstein-egyenletek írják le: a tér megmondja az anyagnak, hogyan mozogjon, az anyag pedig meghatározza, hogy a tér hogyan görbüljön. Sajnos az Einstein-egyenletek egzaktul nem oldhatóak meg tetszőleges általános esetre, így a kutatók közelítéseket alkalmaznak. Az általánosan használt modell szerint nagy skálákon az Univerzumot homogénnek és izotrópnak, azaz minden irányban egyenletes anyageloszlásúnak tekintik. Ezzel az egyszerűsítéssel létezik egzakt matematikai megoldás, az úgynevezett Friedmann-egyenlet, mely leírja, hogy az idő függvényében hogyan tágul a tér. Ez az egyszerűsített kozmológiai modell nagyrészt meg is egyezett a csillagászati megfigyelésekkel, de a 2011-ben Nobel-díjjal jutalmazott felfedezés alapján, szupernóvák észleléséből kiderült, hogy az Univerzum tágulása gyorsul.

A modell keretében ez csak úgy volt magyarázható, ha bevezettek egy úgynevezett sötét energiát, ami az Univerzum jelenlegi teljes energiaháztartásának (beleértve a teljes tömegét is, a nevezetes E= mc2 értelmében) mintegy 70 százalékát kiteszi. Nagy probléma azonban, hogy ennek a titokzatos sötét energiának a földi laboratóriumokban semmi nyomát nem találták, és mibenlétét a fizika mai elméletei nem tudják még közelítőleg sem megmagyarázni.

A galaxisok eloszlása az Univerzum egy szeletében a Sloan Digitális Égtérképezés észlelései alapján (jobbra), illetve az anyageloszlás modellezése N-test szimulációval (balra).

Az ELTE Komplex Rendszerek Fizikája Tanszékén dolgozó Rácz Gábor és Beck Róbert PhD-hallgatók Dobos Lászlóval, Csabai Istvánnal és a valamikor szintén az ELTE-n végzett, és jelenleg a University of Hawaii-on kutató és oktató Szapudi Istvánnal közösen megkérdőjelezték, hogy létezik-e egyáltalán a sötét energia, vagy más módon is magyarázható a gyorsulva tágulás.

Azt vetették fel, hogy a problémát az a közelítés okozza, amely figyelmen kívül hagyja az anyag észlelt csomósodását, illetve annak visszahatását a tágulásra. Nem mindegy ugyanis, hogy az Univerzum a teljes egészére vetített átlagsűrűsége által meghatározottan tágul vagy, hogy a kisebb, gravitációsan kötött régiók „lokális” sűrűségei szerinti tágulást észleljük nagy skálán átlagolva.

Egy általuk készített számítógépes, úgynevezett N-test szimuláció segítségével sok millió „részecskével” modellezték az anyag eloszlását, dinamikáját. A részecskék közt alkalmazva a gravitáció egyenleteit rekonstruálható az Univerzum fejlődése, az anyag csomósodása. Vizsgálataik azt mutatták ki, hogy ha a tér tágulásánál egyenletes anyageloszlással számolnak, akkor megerősítve más kutatók eredményeit, csak sötét energia bevezetésével hozható összhangba a szimuláció a csillagászati észlelésekkel.

Ha viszont figyelembe vették azt, hogy a kisebb „mini-Univerzumok” önállóan tágulnak, mely a teljes Univerzumra nézve átlagolódik, akkor sötét energia nélkül is rekonstruálni tudták az észleléseket, a gyorsulva tágulást. Az eredeti sötét energiás elmélet és az új modell egyaránt képesek magyarázni az eddigi észlelések nagy részét, de bizonyos esetekben az új modell pontosabban egyezik a mérésekkel. A kutatók azt remélik, hogy a közeljövőben végzett újabb mérések segítségével még jobban alátámasztható lesz modelljük, és teljesen kizárható lesz a sötét energia létezése.